tbs/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//! # Threshold Blind Signatures
//!
//! This library implements an ad-hoc threshold blind signature scheme based on
//! BLS signatures using the (unrelated) BLS12-381 curve.

use std::collections::BTreeMap;

use bls12_381::{pairing, G1Affine, G1Projective, G2Affine, G2Projective, Scalar};
use fedimint_core::bls12_381_serde;
use fedimint_core::encoding::{Decodable, Encodable};
use group::ff::Field;
use group::{Curve, Group};
use hex::encode;
use rand::rngs::OsRng;
use rand::SeedableRng;
use rand_chacha::ChaChaRng;
use serde::{Deserialize, Serialize};
use sha3::Digest;

const HASH_TAG: &[u8] = b"TBS_BLS12-381_";
const FINGERPRINT_TAG: &[u8] = b"TBS_KFP24_";

fn hash_bytes_to_g1(data: &[u8]) -> G1Projective {
    let mut hash_engine = sha3::Sha3_256::new();

    hash_engine.update(HASH_TAG);
    hash_engine.update(data);

    let mut prng = ChaChaRng::from_seed(hash_engine.finalize().into());

    G1Projective::random(&mut prng)
}

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct SecretKeyShare(#[serde(with = "bls12_381_serde::scalar")] pub Scalar);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct PublicKeyShare(#[serde(with = "bls12_381_serde::g2")] pub G2Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct AggregatePublicKey(#[serde(with = "bls12_381_serde::g2")] pub G2Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct Message(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct BlindingKey(#[serde(with = "bls12_381_serde::scalar")] pub Scalar);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct BlindedMessage(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct BlindedSignatureShare(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct BlindedSignature(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct Signature(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

macro_rules! point_hash_impl {
    ($type:ty) => {
        impl std::hash::Hash for $type {
            fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
                self.0.to_compressed().hash(state);
            }
        }
    };
}

point_hash_impl!(PublicKeyShare);
point_hash_impl!(AggregatePublicKey);
point_hash_impl!(Message);
point_hash_impl!(BlindedMessage);
point_hash_impl!(BlindedSignatureShare);
point_hash_impl!(BlindedSignature);
point_hash_impl!(Signature);

impl SecretKeyShare {
    pub fn to_pub_key_share(self) -> PublicKeyShare {
        PublicKeyShare((G2Projective::generator() * self.0).to_affine())
    }
}

impl BlindingKey {
    pub fn random() -> BlindingKey {
        // TODO: fix rand incompatibities
        BlindingKey(Scalar::random(OsRng))
    }

    fn fingerprint(&self) -> [u8; 32] {
        let mut hash_engine = sha3::Sha3_256::new();
        hash_engine.update(FINGERPRINT_TAG);
        hash_engine.update(self.0.to_bytes());
        let result = hash_engine.finalize();
        result.into()
    }
}

impl ::core::fmt::Debug for BlindingKey {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        let fingerprint = self.fingerprint();
        let fingerprint_hex = encode(&fingerprint[..]);
        write!(f, "BlindingKey({fingerprint_hex})")
    }
}

impl ::core::fmt::Display for BlindingKey {
    fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
        let fingerprint = self.fingerprint();
        let fingerprint_hex = encode(&fingerprint[..]);
        write!(f, "{fingerprint_hex}")
    }
}

impl Message {
    pub fn from_bytes(msg: &[u8]) -> Message {
        Message(hash_bytes_to_g1(msg).to_affine())
    }
}

pub fn blind_message(msg: Message, blinding_key: BlindingKey) -> BlindedMessage {
    let blinded_msg = msg.0 * blinding_key.0;

    BlindedMessage(blinded_msg.to_affine())
}

pub fn sign_blinded_msg(msg: BlindedMessage, sks: SecretKeyShare) -> BlindedSignatureShare {
    let sig = msg.0 * sks.0;
    BlindedSignatureShare(sig.to_affine())
}

pub fn verify_blind_share(
    msg: BlindedMessage,
    sig: BlindedSignatureShare,
    pk: PublicKeyShare,
) -> bool {
    pairing(&msg.0, &pk.0) == pairing(&sig.0, &G2Affine::generator())
}

/// Combines the exact threshold of valid blinded signature shares to a blinded
/// signature. The responsibility of verifying the shares and supplying
/// exactly the necessary threshold of shares lies with the caller.
/// # Panics
/// If shares is empty
pub fn aggregate_signature_shares(
    shares: &BTreeMap<u64, BlindedSignatureShare>,
) -> BlindedSignature {
    // this is a special case for one-of-one federations
    if shares.len() == 1 {
        return BlindedSignature(
            shares
                .values()
                .next()
                .expect("We have at least one value")
                .0,
        );
    }

    BlindedSignature(
        lagrange_multipliers(shares.keys().cloned().map(Scalar::from).collect())
            .into_iter()
            .zip(shares.values())
            .map(|(lagrange_multiplier, share)| lagrange_multiplier * share.0)
            .reduce(|a, b| a + b)
            .expect("We have at least one share")
            .to_affine(),
    )
}

// TODO: aggregating public key shares is hacky since we can obtain the
// aggregated public by evaluating the dkg polynomial at zero - this function
// should be removed, however it is currently needed in the mint module to
// until we add the aggregated public key to the mint config.
pub fn aggregate_public_key_shares(shares: &BTreeMap<u64, PublicKeyShare>) -> AggregatePublicKey {
    // this is a special case for one-of-one federations
    if shares.len() == 1 {
        return AggregatePublicKey(
            shares
                .values()
                .next()
                .expect("We have at least one value")
                .0,
        );
    }

    AggregatePublicKey(
        lagrange_multipliers(shares.keys().cloned().map(Scalar::from).collect())
            .into_iter()
            .zip(shares.values())
            .map(|(lagrange_multiplier, share)| lagrange_multiplier * share.0)
            .reduce(|a, b| a + b)
            .expect("We have at least one share")
            .to_affine(),
    )
}

fn lagrange_multipliers(scalars: Vec<Scalar>) -> Vec<Scalar> {
    scalars
        .iter()
        .map(|i| {
            scalars
                .iter()
                .filter(|j| *j != i)
                .map(|j| j * (j - i).invert().expect("We filtered the case j == i"))
                .reduce(|a, b| a * b)
                .expect("We have at least one share")
        })
        .collect()
}

pub fn verify_blinded_signature(
    msg: BlindedMessage,
    sig: BlindedSignature,
    pk: AggregatePublicKey,
) -> bool {
    pairing(&msg.0, &pk.0) == pairing(&sig.0, &G2Affine::generator())
}

pub fn unblind_signature(blinding_key: BlindingKey, blinded_sig: BlindedSignature) -> Signature {
    let sig = blinded_sig.0 * blinding_key.0.invert().unwrap();
    Signature(sig.to_affine())
}

pub fn verify(msg: Message, sig: Signature, pk: AggregatePublicKey) -> bool {
    pairing(&msg.0, &pk.0) == pairing(&sig.0, &G2Affine::generator())
}

#[cfg(test)]
mod tests {
    use std::collections::BTreeMap;

    use bls12_381::{G2Projective, Scalar};
    use group::ff::Field;
    use group::Curve;
    use rand::rngs::OsRng;

    use crate::{
        aggregate_signature_shares, blind_message, sign_blinded_msg, unblind_signature, verify,
        verify_blind_share, AggregatePublicKey, BlindedSignatureShare, BlindingKey, Message,
        PublicKeyShare, SecretKeyShare,
    };

    fn dealer_keygen(
        threshold: usize,
        keys: usize,
    ) -> (AggregatePublicKey, Vec<PublicKeyShare>, Vec<SecretKeyShare>) {
        let mut rng = OsRng;
        let poly: Vec<Scalar> = (0..threshold).map(|_| Scalar::random(&mut rng)).collect();

        let apk = (G2Projective::generator() * eval_polynomial(&poly, &Scalar::zero())).to_affine();

        let sks: Vec<SecretKeyShare> = (0..keys)
            .map(|idx| SecretKeyShare(eval_polynomial(&poly, &Scalar::from(idx as u64 + 1))))
            .collect();

        let pks = sks
            .iter()
            .map(|sk| PublicKeyShare((G2Projective::generator() * sk.0).to_affine()))
            .collect();

        (AggregatePublicKey(apk), pks, sks)
    }

    fn eval_polynomial(coefficients: &[Scalar], x: &Scalar) -> Scalar {
        coefficients
            .iter()
            .cloned()
            .rev()
            .reduce(|acc, coefficient| acc * x + coefficient)
            .expect("We have at least one coefficient")
    }

    #[test]
    fn test_roundtrip() {
        let (pk, pks, sks) = dealer_keygen(5, 15);

        let msg = Message::from_bytes(b"Hello World!");
        let bkey = BlindingKey::random();
        let bmsg = blind_message(msg, bkey);

        let bsig_shares = sks
            .iter()
            .map(|sk| sign_blinded_msg(bmsg, *sk))
            .collect::<Vec<BlindedSignatureShare>>();

        for (share, pk) in bsig_shares.iter().zip(pks) {
            assert!(verify_blind_share(bmsg, *share, pk));
        }

        let bsig_shares = (1_u64..)
            .zip(bsig_shares)
            .take(5)
            .collect::<BTreeMap<u64, BlindedSignatureShare>>();

        let bsig = aggregate_signature_shares(&bsig_shares);
        let sig = unblind_signature(bkey, bsig);

        assert!(verify(msg, sig, pk));
    }

    #[test]
    fn test_blindingkey_fingerprint_multiple_calls_same_result() {
        let bkey = BlindingKey::random();
        assert_eq!(bkey.fingerprint(), bkey.fingerprint());
    }

    #[test]
    fn test_blindingkey_fingerprint_ne_scalar() {
        let bkey = BlindingKey::random();
        assert_ne!(bkey.fingerprint(), bkey.0.to_bytes());
    }
}