tpe/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use std::collections::BTreeMap;
use std::io::Write;
use std::ops::Mul;

use bitcoin_hashes::{sha256, Hash};
use bls12_381::{pairing, G1Projective, G2Projective, Scalar};
pub use bls12_381::{G1Affine, G2Affine};
use fedimint_core::bls12_381_serde;
use fedimint_core::encoding::{Decodable, Encodable};
use group::ff::Field;
use group::{Curve, Group};
use rand_chacha::rand_core::SeedableRng;
use rand_chacha::ChaChaRng;
use serde::{Deserialize, Serialize};

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct SecretKeyShare(#[serde(with = "bls12_381_serde::scalar")] pub Scalar);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct PublicKeyShare(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct AggregatePublicKey(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct DecryptionKeyShare(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct AggregateDecryptionKey(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct EphemeralPublicKey(#[serde(with = "bls12_381_serde::g1")] pub G1Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Encodable, Decodable, Serialize, Deserialize)]
pub struct EphemeralSignature(#[serde(with = "bls12_381_serde::g2")] pub G2Affine);

#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, Encodable, Decodable, Serialize, Deserialize)]
pub struct CipherText {
    #[serde(with = "serde_big_array::BigArray")]
    pub encrypted_preimage: [u8; 32],
    pub pk: EphemeralPublicKey,
    pub signature: EphemeralSignature,
}

pub fn derive_public_key_share(sk: &SecretKeyShare) -> PublicKeyShare {
    PublicKeyShare(G1Projective::generator().mul(sk.0).to_affine())
}

pub fn encrypt_preimage(
    agg_pk: &AggregatePublicKey,
    encryption_seed: &[u8; 32],
    preimage: &[u8; 32],
    commitment: &sha256::Hash,
) -> CipherText {
    let agg_dk = derive_agg_decryption_key(agg_pk, encryption_seed);
    let encrypted_preimage = xor_with_hash(*preimage, &agg_dk);

    let ephemeral_sk = derive_ephemeral_sk(encryption_seed);
    let ephemeral_pk = G1Projective::generator().mul(ephemeral_sk).to_affine();
    let ephemeral_signature = hash_to_message(&encrypted_preimage, &ephemeral_pk, commitment)
        .mul(ephemeral_sk)
        .to_affine();

    CipherText {
        encrypted_preimage,
        pk: EphemeralPublicKey(ephemeral_pk),
        signature: EphemeralSignature(ephemeral_signature),
    }
}

pub fn derive_agg_decryption_key(
    agg_pk: &AggregatePublicKey,
    encryption_seed: &[u8; 32],
) -> AggregateDecryptionKey {
    AggregateDecryptionKey(
        agg_pk
            .0
            .mul(derive_ephemeral_sk(encryption_seed))
            .to_affine(),
    )
}

fn derive_ephemeral_sk(encryption_seed: &[u8; 32]) -> Scalar {
    Scalar::random(&mut ChaChaRng::from_seed(*encryption_seed))
}

fn xor_with_hash(mut bytes: [u8; 32], agg_dk: &AggregateDecryptionKey) -> [u8; 32] {
    let hash = sha256::Hash::hash(&agg_dk.0.to_compressed());

    for i in 0..32 {
        bytes[i] ^= hash[i];
    }

    bytes
}

fn hash_to_message(
    encrypted_point: &[u8; 32],
    ephemeral_pk: &G1Affine,
    commitment: &sha256::Hash,
) -> G2Affine {
    let mut engine = sha256::HashEngine::default();

    engine
        .write_all("FEDIMINT_TPE_BLS12_381_MESSAGE".as_bytes())
        .expect("Writing to a hash engine cannot fail");

    engine
        .write_all(encrypted_point)
        .expect("Writing to a hash engine cannot fail");

    engine
        .write_all(&ephemeral_pk.to_compressed())
        .expect("Writing to a hash engine cannot fail");

    engine
        .write_all(commitment.as_byte_array())
        .expect("Writing to a hash engine cannot fail");

    let seed = sha256::Hash::from_engine(engine).to_byte_array();

    G2Projective::random(&mut ChaChaRng::from_seed(seed)).to_affine()
}

/// Verifying a ciphertext guarantees that it has not been malleated.
pub fn verify_ciphertext(ct: &CipherText, commitment: &sha256::Hash) -> bool {
    let message = hash_to_message(&ct.encrypted_preimage, &ct.pk.0, commitment);

    pairing(&G1Affine::generator(), &ct.signature.0) == pairing(&ct.pk.0, &message)
}

pub fn decrypt_preimage(ct: &CipherText, agg_dk: &AggregateDecryptionKey) -> [u8; 32] {
    xor_with_hash(ct.encrypted_preimage, agg_dk)
}

/// The function asserts that the ciphertext is valid.
pub fn verify_agg_decryption_key(
    agg_pk: &AggregatePublicKey,
    agg_dk: &AggregateDecryptionKey,
    ct: &CipherText,
    commitment: &sha256::Hash,
) -> bool {
    let message = hash_to_message(&ct.encrypted_preimage, &ct.pk.0, commitment);

    assert_eq!(
        pairing(&G1Affine::generator(), &ct.signature.0),
        pairing(&ct.pk.0, &message)
    );

    // Since the ciphertext is valid its signature is the ecdh point of the message
    // and the ephemeral public key. Hence, the following equation holds if and only
    // if the aggregate decryption key is the ecdh point of the ephemeral public key
    // and the aggregate public key.

    pairing(&agg_dk.0, &message) == pairing(&agg_pk.0, &ct.signature.0)
}

pub fn create_decryption_key_share(sks: &SecretKeyShare, ct: &CipherText) -> DecryptionKeyShare {
    DecryptionKeyShare(ct.pk.0.mul(sks.0).to_affine())
}

/// The function asserts that the ciphertext is valid.
pub fn verify_decryption_key_share(
    pks: &PublicKeyShare,
    dks: &DecryptionKeyShare,
    ct: &CipherText,
    commitment: &sha256::Hash,
) -> bool {
    let message = hash_to_message(&ct.encrypted_preimage, &ct.pk.0, commitment);

    assert_eq!(
        pairing(&G1Affine::generator(), &ct.signature.0),
        pairing(&ct.pk.0, &message)
    );

    // Since the ciphertext is valid its signature is the ecdh point of the message
    // and the ephemeral public key. Hence, the following equation holds if and only
    // if the decryption key share is the ecdh point of the ephemeral public key and
    // the public key share.

    pairing(&dks.0, &message) == pairing(&pks.0, &ct.signature.0)
}

pub fn aggregate_decryption_shares(
    shares: &BTreeMap<u64, DecryptionKeyShare>,
) -> AggregateDecryptionKey {
    AggregateDecryptionKey(
        lagrange_multipliers(shares.keys().cloned().map(Scalar::from).collect())
            .into_iter()
            .zip(shares.values())
            .map(|(lagrange_multiplier, share)| lagrange_multiplier * share.0)
            .reduce(|a, b| a + b)
            .expect("We have at least one share")
            .to_affine(),
    )
}

fn lagrange_multipliers(scalars: Vec<Scalar>) -> Vec<Scalar> {
    scalars
        .iter()
        .map(|i| {
            scalars
                .iter()
                .filter(|j| *j != i)
                .map(|j| j * (j - i).invert().expect("We filtered the case j == i"))
                .reduce(|a, b| a * b)
                .expect("We have at least one share")
        })
        .collect()
}

macro_rules! impl_hash_with_serialized_compressed {
    ($type:ty) => {
        impl std::hash::Hash for $type {
            fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
                state.write(&self.0.to_compressed());
            }
        }
    };
}

impl_hash_with_serialized_compressed!(AggregatePublicKey);
impl_hash_with_serialized_compressed!(DecryptionKeyShare);
impl_hash_with_serialized_compressed!(AggregateDecryptionKey);
impl_hash_with_serialized_compressed!(EphemeralPublicKey);
impl_hash_with_serialized_compressed!(EphemeralSignature);
impl_hash_with_serialized_compressed!(PublicKeyShare);

#[cfg(test)]
mod tests {
    use std::collections::BTreeMap;

    use bitcoin_hashes::{sha256, Hash};
    use bls12_381::{G1Projective, Scalar};
    use group::ff::Field;
    use group::Curve;
    use rand::rngs::OsRng;

    use crate::{
        aggregate_decryption_shares, create_decryption_key_share, decrypt_preimage,
        derive_agg_decryption_key, encrypt_preimage, verify_agg_decryption_key, verify_ciphertext,
        verify_decryption_key_share, AggregatePublicKey, DecryptionKeyShare, PublicKeyShare,
        SecretKeyShare,
    };

    fn dealer_keygen(
        threshold: usize,
        keys: usize,
    ) -> (AggregatePublicKey, Vec<PublicKeyShare>, Vec<SecretKeyShare>) {
        let poly: Vec<Scalar> = (0..threshold).map(|_| Scalar::random(&mut OsRng)).collect();

        let apk = (G1Projective::generator() * eval_polynomial(&poly, &Scalar::zero())).to_affine();

        let sks: Vec<SecretKeyShare> = (0..keys)
            .map(|idx| SecretKeyShare(eval_polynomial(&poly, &Scalar::from(idx as u64 + 1))))
            .collect();

        let pks = sks
            .iter()
            .map(|sk| PublicKeyShare((G1Projective::generator() * sk.0).to_affine()))
            .collect();

        (AggregatePublicKey(apk), pks, sks)
    }

    fn eval_polynomial(coefficients: &[Scalar], x: &Scalar) -> Scalar {
        coefficients
            .iter()
            .cloned()
            .rev()
            .reduce(|acc, coefficient| acc * x + coefficient)
            .expect("We have at least one coefficient")
    }

    #[test]
    fn test_roundtrip() {
        let (agg_pk, pks, sks) = dealer_keygen(3, 4);

        let encryption_seed = [7_u8; 32];
        let preimage = [42_u8; 32];
        let commitment = sha256::Hash::hash(&[0_u8; 32]);
        let ciphertext = encrypt_preimage(&agg_pk, &encryption_seed, &preimage, &commitment);

        assert!(verify_ciphertext(&ciphertext, &commitment));

        let shares: Vec<DecryptionKeyShare> = sks
            .iter()
            .map(|sk| create_decryption_key_share(sk, &ciphertext))
            .collect();

        for (pk, share) in pks.iter().zip(shares.iter()) {
            assert!(verify_decryption_key_share(
                pk,
                share,
                &ciphertext,
                &commitment
            ));
        }

        let selected_shares: BTreeMap<u64, DecryptionKeyShare> = (1_u64..4).zip(shares).collect();

        assert_eq!(selected_shares.len(), 3);

        let agg_dk = aggregate_decryption_shares(&selected_shares);

        assert_eq!(agg_dk, derive_agg_decryption_key(&agg_pk, &encryption_seed));

        assert!(verify_agg_decryption_key(
            &agg_pk,
            &agg_dk,
            &ciphertext,
            &commitment
        ));

        assert_eq!(preimage, decrypt_preimage(&ciphertext, &agg_dk));
    }
}